中韩联手“突破摩尔定律”!新型半导体研发重大突破:硅原料将被取代 商业化生产待定

2022/06/06 09:55来源:FX168

FX168财经报社(香港)讯 中国与韩国联手突破摩尔定律,新型半导体研发出现重大突破。韩国科学技术研究院(KIST)近日宣布通过开发一种新型超薄电极材料,已成功使基于二维半导体的电子和逻辑器可自由控制电气性能。南洋理工大学、北京大学、南京大学等校研究团队,也在二维半导体集成及材料生长方面取得突破。

中国国内上市公司也在蓄力研发和储备相关技术,未来或受益这一前沿科技。先来提提,何谓摩尔定律,为何它对半导体极具影响力。英特尔联合创始人戈登·摩尔提出知名的摩尔定律:集成电路上可容纳的元器件的数量每隔18至24个月就会增加一倍,性能也将提升一倍。这意味着,单位面积硅芯片上晶体管的物理尺寸越来越小,数量越来越多。但时至今日,一个指甲大小的芯片可承载100亿个晶体管,硅晶体管也正在达到其物理极限。摩尔定律的延续,需要完全不同的新材料和新设备。

近年来被广泛寄予厚望的二维半导体就是其中之一,因传统硅晶体管基于三维的块体半导体,在其中电子很难通过纳米尺度的通道。但二维材料可使晶体管尺寸进一步缩小,成为原子级超薄的晶体片,方便电荷相对自由地流过。

韩国科学技术研究院(KIST)日前宣布,光电材料与器件中心的Do Kyung Hwang博士和物理系的Kimoon Lee教授领导的联合研究小组通过开发新型超薄电极材料(Cl-SnSe2),成功使基于二维半导体的电子和逻辑器可以自由控制其电气性能。

(来源:Wiley Online Library)

这项研究攻克了费米能级钉扎(Fermi-level pinning)现象下,传统二维半导体器件很难实现互补逻辑电路的难题,仅表现N型或P型器件的特性。使用该新型电极材料,单个器件得以同时执行N型和P型器件的功能,得到一种高性能、低功耗、互补的逻辑电路,可以执行不同的逻辑运算。

Do Kyung Hwang博士预计,开发的二维电极材料非常薄,表现出高透光率和柔韧性。因此,它们可用于下一代柔性透明半导体器件。南洋理工大学、北京大学、清华大学和北京量子信息科学研究院的研究人员最近展示了利用范德华力成功地将单晶滴定锶,也就是一种高K钙钛矿氧化物与二维半导体集成。这种方法可以为开发新型晶体管,以及电子元件开辟新的可能性。

报道中有提到说,单晶滴定锶是一种钙钛矿氧化物,此前已发现将钙钛矿氧化物与具有不同原子结构的材料结合起来几乎是不可能的。但该团队采用的智能方法成功绕过这一限制,可以实现几乎无限的材料组合。

研究人员表示,他们创造的晶体管可用于制造高性能和低功耗互补金属氧化物半导体逆变器电路。未来,他们的设备可以大规模制造,用于开发低功耗的逻辑电路和微芯片。不久前,南京大学王欣然教授团队与东南大学王金兰教授团队合作宣布,在国际上首次实现大面积均匀的双层二硫化钼,已知的二维半导体材料中光电性能最优秀的材料之一薄膜外延生长。

论文共同第一作者、东南大学教授马亮表示:“这份研究不仅突破了大面积均匀双层二硫化钼的层数可控外延生长技术瓶颈,研制了最高性能的二硫化钼晶体管器件,而且双层二硫化钼层数可控成核新机制有望进一步拓展至其他二维材料体系的外延生长,为后硅基半导体电子器件的替代材料提供了一种新的方向和选择。”

在已知二硫化钼的研究中,双层二硫化钼相比单层二硫化钼具有更高的载流子迁移率、更大的驱动电流,在电子器件的应用中更有优势。但传统生长模式获得的双层二硫化钼存在层数均匀性差和薄膜不连续的难题,该团队提出了衬底诱导的双层成核以及“齐头并进”的全新生长机制取得突破。

这里需要注意的是,实际上晶圆代工零头企业,都正在努力跟进这项新研发。在2021年12月举办的IEEE国际电子设备会议上,英特尔和台积电展示他们针对二维半导体高电阻低电流难题的解决方案。在半导体与金属接触的地方有尖锐的电阻尖,这是二维半导体当前最大的障碍。

台积电和英特尔通过使用半金属锑作为触点材料来降低半导体和触点之间的能量障碍,从而实现二维半导体与器件的低电阻连接。台积电自2019年以来就寻找能取代硅的二维材料。去年5月,台积电率先宣布发现半金属铋能作为二维半导体的结合材料达到极低电阻。但铋存在熔点太低的缺陷,无法经受后续芯片的高温加工。

聚焦中国国内市场发展,2021年9月,南京大学电子科学与工程学院王欣然教授课题组突破了二维半导体单晶制备和异质集成关键技术,其中就有天马微电子股份有限公司(深天马A)的合作,这一突破为未来Micro LED显示技术发展提供了全新技术路线。

另外,目前二维半导体研究最多的两个材料,二硫化钼(molybdenum disulfide)与二硫化钨(tungsten disulfide)也有公司涉足。

编辑:小萧